

Technologies and Nanotechnologies of Magnetic-Abrasive Machining of Surfaces

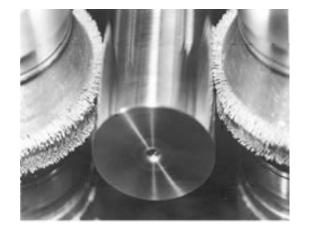
Speaker:

Dr. Mikalai Khomich, Director of POLIMAG

POLIMAG

ul. Surganova 37/1, 220013 Minsk, Belarus

Tel: +375 17 252 87 32

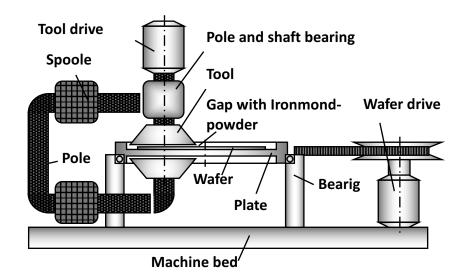

E-mail: polimag@mail.ru

www.polimag.eu

Minsk 2021

 The magnetic field transforms the ferroabrasive powder into a kind of an "elastic brush" and polishes the surface

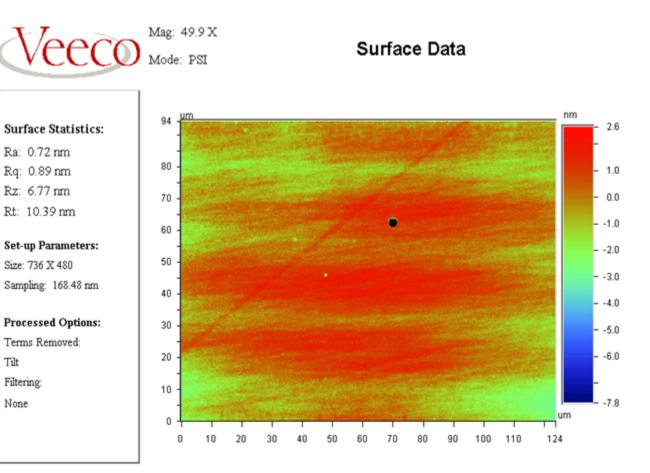
 Pulsing magnetic field improves the structure of the preface layer of the material

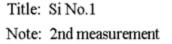


Application

- Formation of surface nanorelief
- Polishing surfaces before coating
- Cleansing surfaces before welding
- Polishing surfaces to increase resistance to corrosion, wear and mechanical destruction
- Surface modification under physical-chemical processes (diffusion, adhesion, etc.)

Experimental model for polishing plate surfaces





Polishing of electronics: Si-wafers

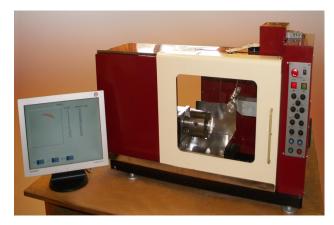
Ra = 0.72 nm

TTV = 2.9 μm

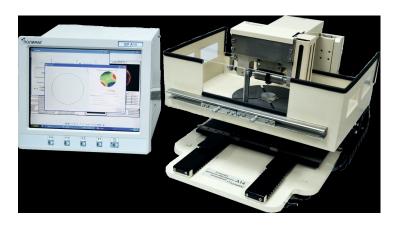
Polishing laser crystals (CaF₂ and other)

Veeco Contour Plot Measurement Parameters File: CaF2-Rand 94 Wavelength 605.40 nm 43.3 Wedge 0.50 X/YSize 736 X 480 35.0 80 Pixel size 168.48 nm Date 04/10/2003 70 Time 08:39:40 25.0 Averages 1 60 Analysis Results 15.0 50 Ra 1.537 nm 2.126 nm Rms 40 5.0 20 Pt. PV 41.879 nm 30 2 Pt. PV 60.19 nm -5.0 20 Analysis Parameters Terms Tilt 10 C -16.8 Masks: um Filtering None 0 Data Restore No 0 10 20 30 40 50 60 70 80 90 100 110 124 Valid Points 353280

Ra = 1.537 nm


Title: CaF2-Rand Note: Nr.3

Equipment for Superfine polishing


3905 Valid layout

A09 Experimental sample

A14 Experimental sample

A17

Industrial plant

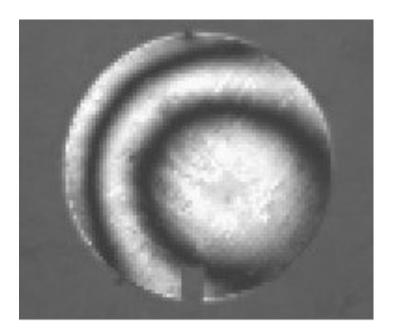
Features of superfine polishing

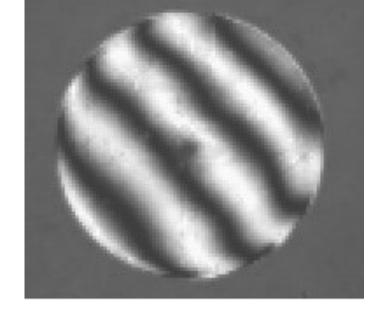
Application:

surfaces of high-precision details of optics, lasers, micro- and nanoelectronics, etc.

Benefits:

- Very high quality
 - Roughness, Ra:


before: 8 – 10 nm after: 0.2 – 0.8 nm


- minimum defects in the structure of the surface layer
- Performance is 4-10 times higher than that of other technologies
- Cost is 3 5 times lower than cost of other technologies
- Environmental friendliness

Optical glass polishing

Interferograms of optical glass before and after MAM

Before MAM: **PV = 158 nm Ra = 20 nm**

After MAM: **PV = 30 nm Ra = 1.4 nm**

Magnetic-Abrasive Polishing of plain, spherical and aspherical surfaces

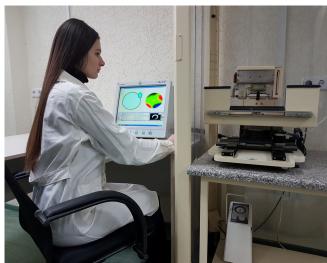
Model A17

Before MAM		Aft	After MAM	
Sa	0.27 nm	Sa	0.14 nm	
Sq	0.369 nm	Sq	0.189 nm	
Sp	4.58 nm	Sp	1.13 nm	
Sv	3.66 nm	Sv	0.735 nm	
ISO 25178				

Technical characteristics

Piece diameter	10 - 200 mm
Ra of the polished surface	0.2 – 0,8 nm
Polishing time	2 - 15 min
Power consumption	1.5 kW
Size L×W×H	900 × 500 × 500 mm
Weight	80 kg

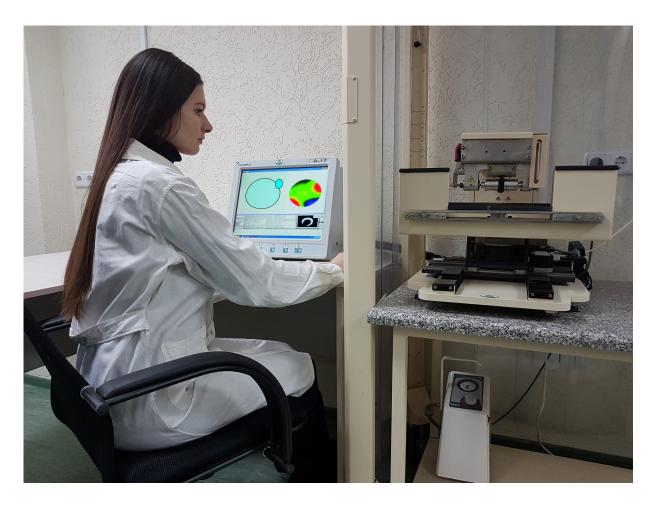
MAM potential


MRF (Q22-XE)

Q-flex 100

Analogs

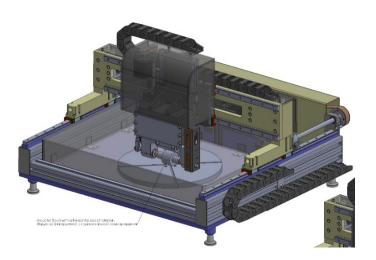
Model A17

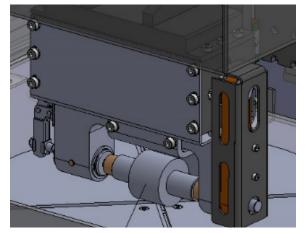


Before MAM		After MAM		
Sa	0.27 nm	Sa	0.14 nm	
Sq	0.369 nm	Sq	0.189 nm	
Sp	4.58 nm	Sp	1.13 nm	
Sv	3.66 nm	Sv	0.735 nm	
Sz	8.24 nm	Sz	1.87 nm	

ISO 25178

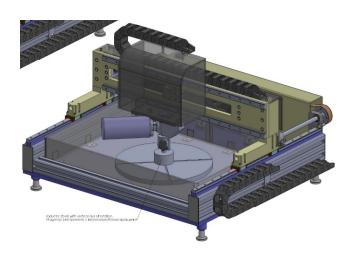
Model A17

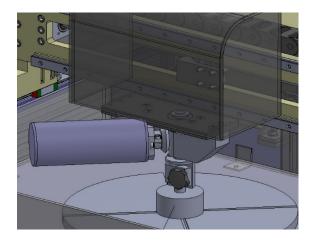




A17 in the autonomous clean zone

Model A20-300 with horizontal axis


POLIMAG


Horizontal axis of rotation of the inductor-tool

- carries out polishing (according to the digitized interferogram of the original surface) with the periphery of the brush ring formed by a magnetic field from a ferro-abrasive powder
- contact area of the powder with the polished surface is about 1 $\rm cm^2$
- provides nanorelief with Ra < 3 nm
- shape parameter PV < 30 nm

This pattern can be used to polish flat, spherical and aspherical surfaces. In some cases, complex surfaces can be polished.

Model A20-300 with vertical axis

+ POLIMAG

Vertical axis of rotation of the inductor-tool

- implements the MAC with the end of the brush ring (by analogy with face milling)
- contact area 50 cm²
- provides Ra < 3 nm
- shape parameter PV < 30 nm
- improves surface shape characteristics by 30-50%

This scheme can be used to polish flat and closed surfaces.

Change from one layout to another is less than 15 minutes.

Laser induced damage threshold

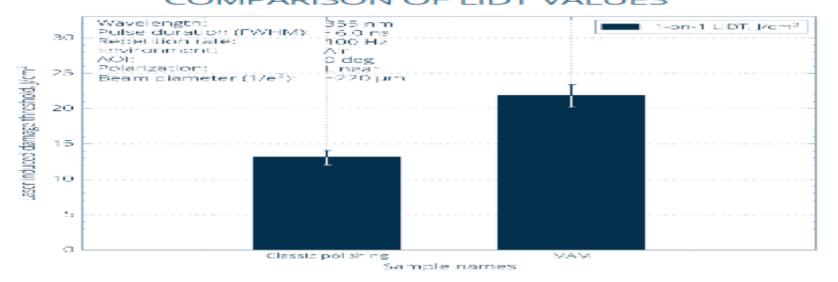
 LEARS TO Sollowide Avenue 10. UT 10222 Minute tolling inc.

Compare and a SOLO SERV

Internet for Code 00 0000000
Encode 00 0000000
Encode 00 0000000
Encode 00 00000000

🐼 - www.keers.com

POLIMAG – SO1176 COMPARISON OF LIDT VALUES



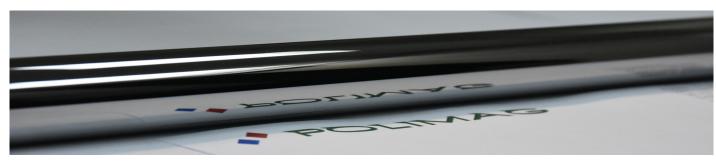
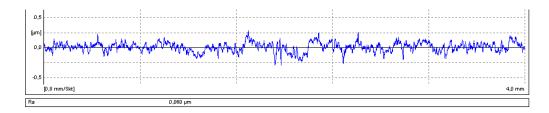
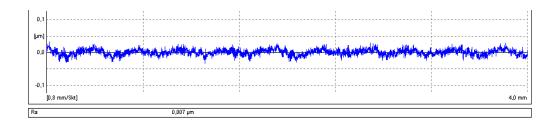

Figure 1: Comparison of SO1176 measurements.

Table 1: SO1176 data sp	readsheet
-------------------------	-----------


Sample	Threshold (1-on-1)	Error lower	Error upper
MAM	21,80	1,58	1,58
Classic polishing	13,13	1,07	0,96

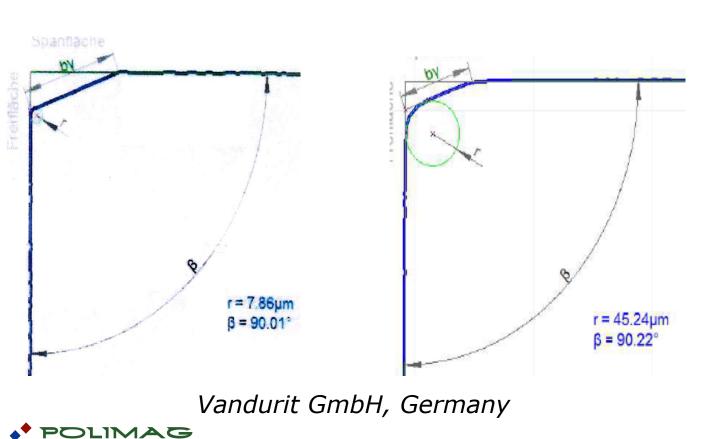

Magnetic-abrasive polishing of stab WC-Co

Cylindrical sample (D x L = $22 \times 280 \text{ mm}$), of WC - Co alloy

Before MAP: Ra = 53 nm

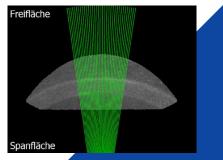
Ra measurements

	before MAP	after MAP
1	56	7
2	48	7
3	52	7
4	60	8
5	47	7
Mean	53	7

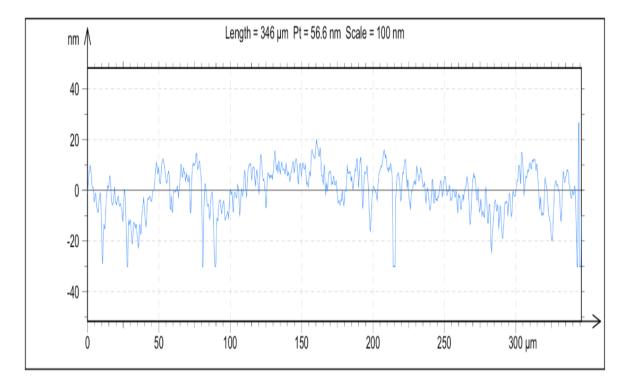

After MAP: Ra = 7 nm

Polishing ceramics: plates for cutters and mills

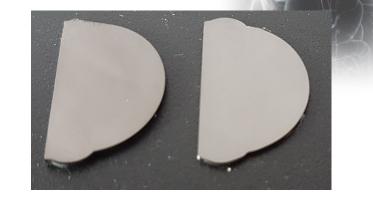
After MAM


r = 45.24 µm

Before MAM r = 7.86 μ m

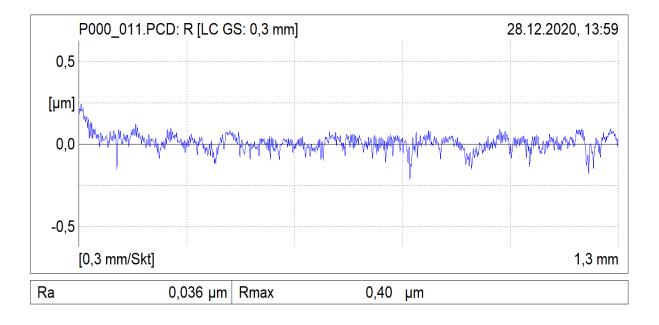


Materials	Microhardness, GPa	
Diamond	100	
Borazon	88	
SiC	33	
AI_2O_3	20	
Si	12	



MAP artificial heart valve: valve surface

Sash material (locking elements): pyrolytic carbon (sitall)



After MAM

Ra	3.91 nm
Rz	24.39 nm
Sq	9.41 nm

MAP artificial heart valve: stent surface

Stent material: Ni - Ti alloy

After MAM

Ra 36 nm

Comparison of MAM and MRF

	MRF (QED, USA)	MAM (Polimag, Belarus)
Technological characteristics		
intensity (capacity) %	100	200-500
roughness Ra, nm	< 1	< 1
technological tool	magnetoreological fluid	ferroabrasive powder
Technical characteristics		
complexity of process, maintenance and operation	high	medium
electricity consumption, kWt	3	2
annual consumption of technological tool	100 liters	20 kg
Cost		
cost per unit, \$	500	200
annual cost, \$	50 000	4 000

MAM equipment (polishing and cleansing) produced in 1975 – 1995

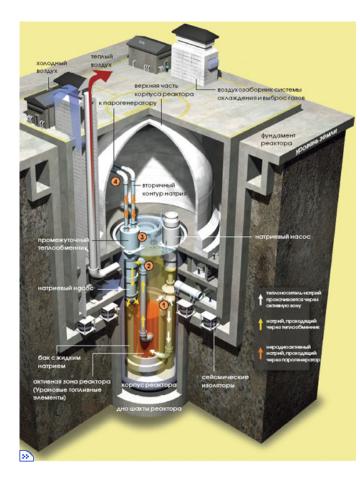
Cleansing edges before welding


Polishing shafts

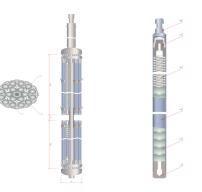
Polishing screws

Cleansing plates and bands

Polishing spheres


Polishing and cleansing pipes

Cleansing wire



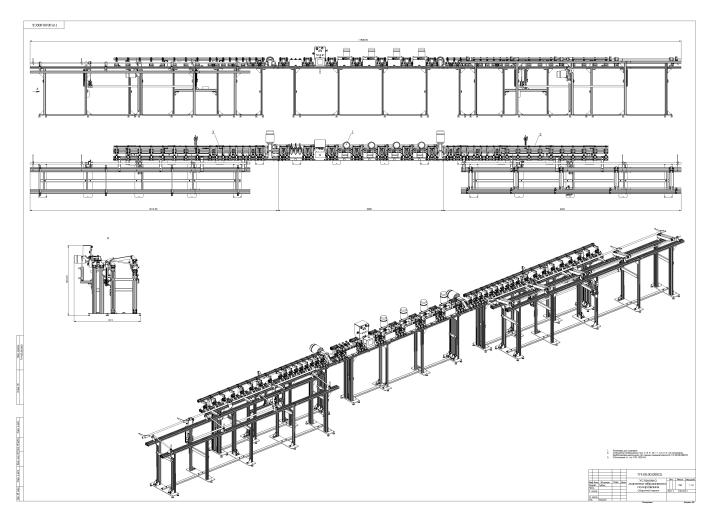
Magnetic abrasive polishing of fuel rods of nuclear reactors

Nuclear reactor scheme

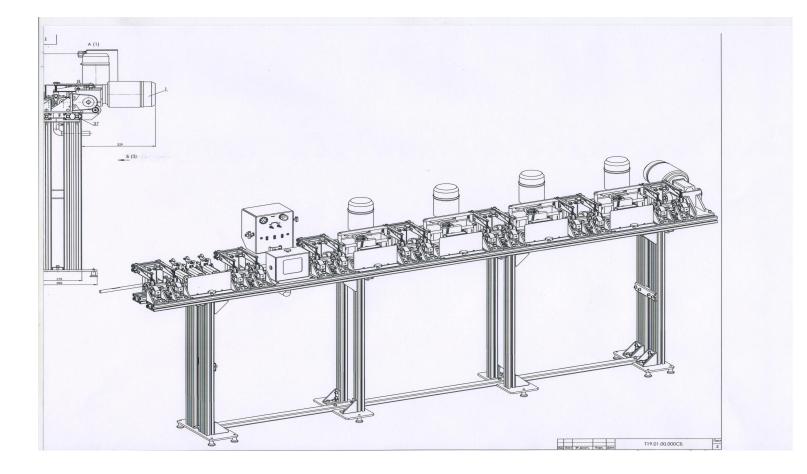
POLIMAG

Heat-releasing element (fuel rod)

(chemical etching, grinding and mechanical polishing) do not provide the required surface quality of pipes


Conventional technologies

Model T15 for polishing of pipes fuel rods


Fuel cell assembly

Automatic plant T19 for polishing of pipes fuel rods (under construction)

Working module of plant T19

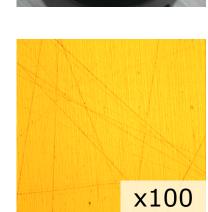
MAP of the inner surfaces of the waveguides

Waveguide material: alloys Cu, Al and Si, steel, etc.

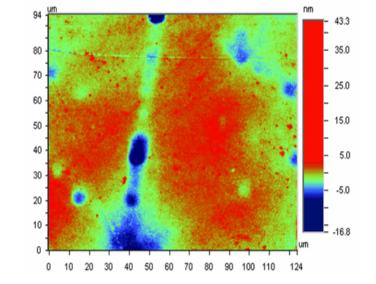
Before MAP 0.800 μm

After MAP

0.076 μm



Flat punch surface


Roughness Ra, µm

	Before MAP	After MAP	
		20 passes	30 passes
1	2.897	0.328	0.024
2	2.761	0.413	0.021
3	2.555	0.382	0.029
4	2.671	0.384	0.040
5	2.437	0.685	0.040
6	2.634	0.623	0.034
7	2.666	0.449	0.026
8	2.664	0.325	0.038
9	2.660	0.279	0.098
10	2.788	0.510	0.052

Examples of details for MAM

Ra = 0,14 nm = 1,4 À

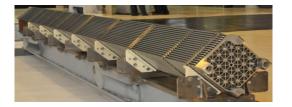
Laser ceramics

Ra = 1.537 nm

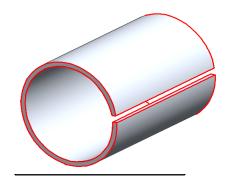
Si-wafers for electronics

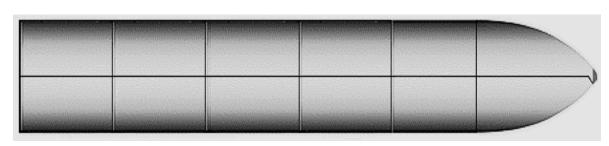
Ra = 0.72 nm

Examples of details for MAM


Tools: cutters, punch, drills

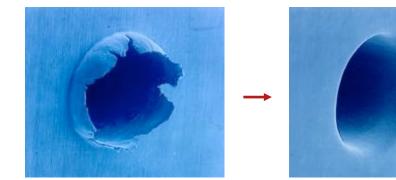
Pipes: external and internal surfaces





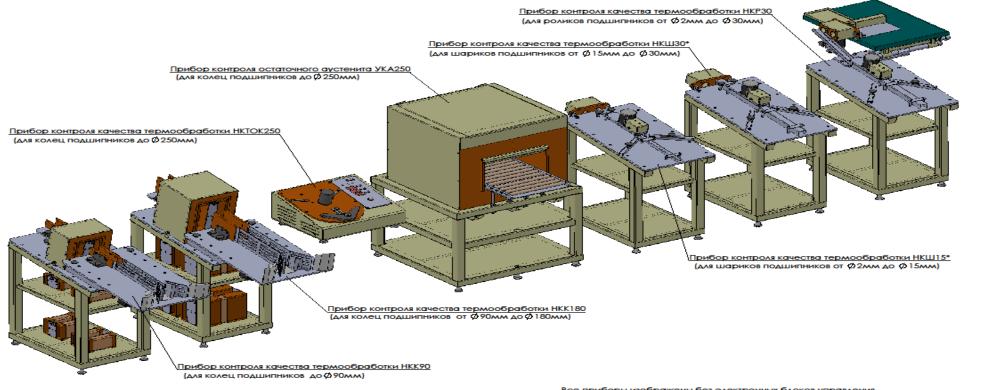
Envelopes of fuel rods of nuclear reactors

Examples of details for MAM


Cleansing of surfaces of details for aviation, space, ship and other industries

Cleansing edges before welding

Polishing aviaturbine blades



Removing burrs and edges rounding

Instruments for quality control of bearing components after heat treatment

Все приборы изображены без электронных блоков управления *Приборы изображены без устройств автоматической поштучной подачи шариков

More than 170 scientific publications More than 70 patents

POLIMAG

ul. Surganova 37/1, 220013 Minsk, Belarus

Tel: +375 17 252 87 32

E-mail: polimag@mail.ru

www.polimag.eu

Belarussian National Technical University